
KAN:Kolmogorov–Arnold Networks
1st Haoyu Dong(hd2573)

Electrical Engineering
Columbia University

New York, USA

2nd Jinfan Xiang(jx2598)
Electrical Engineering
Columbia University

New York, USA

3rd Yunfei Ke(yk3108)
Data Science

Columbia University
New York, USA

Abstract—This report reproduces and analyzes the Kol-
mogorov–Arnold Networks (KAN), a novel neural network ar-
chitecture inspired by the Kolmogorov–Arnold Representation
Theorem (KART). KAN addresses limitations of traditional
multilayer perceptrons (MLPs), such as inefficiency in high-
dimensional tasks and lack of interpretability. By leveraging
trainable univariate spline functions and dynamic grid refine-
ment, KAN achieves efficient function approximation, adaptabil-
ity, and symbolic interpretability. Experimental results validate
KAN’s equivalent accuracy and superior scalability compared
to MLPs, particularly in complex compositional tasks. Chal-
lenges, including computational overhead and grid optimization,
are explored alongside potential improvements to enhance the
practicality of KAN for diverse applications in machine learning.
We also studied the limitation of KAN in many applications and
therefore analyzed the reasons behind them. We hope that this
work can contribute to the study of KAN based models in the
future.

I. INTRODUCTION

In modern deep learning, the Multilayer Perceptron (MLP)
serves as a cornerstone, whose foundational importance cannot
be overstated. Since its proposal by Frank Rosenblatt in the
mid-20th century [1], MLP has been extensively studied and
has become the backbone of most modern deep learning
applications. This has significantly contributed to the rapid
advancements and thriving success of artificial intelligence
(AI) in recent years. The key theoretical underpinning of
MLP lies in the Universal Approximation Theorem (UAT).
Proposed in seminal works such as [2], UAT demonstrates that
an appropriately constructed MLP, with a sufficient number
of hidden units and a non-linear activation function, can
approximate any continuous function on a compact domain
to arbitrary accuracy. This theoretical guarantee, coupled with
the well-tested structure of MLP [3], has enabled modern
deep learning models to excel across diverse tasks, showcasing
remarkable learning capabilities.
However, alongside the notable benefits brought by UAT
and the affine-activation structure of MLP, several intrinsic
limitations arise:

• Curse of Dimensionality (COD): While UAT ensures
MLP’s universality, the exponential growth in the re-
quired number of parameters for high-dimensional prob-
lems often leads to inefficiencies [4].

• Interpretability Issues: The large number of parameters
and hidden layers make MLP-based models inherently
difficult to interpret. Therefore, post-analysis tools are

Fig. 1: Weakness of MLP

needed to illustrate the results obtained by neural net-
works [5].

• Training Challenges: Deep MLP architectures are prone
to issues such as gradient vanishing and exploding [6],
leading to unstable training processes.

• Task-Specific Limitations: For certain specialized tasks,
such as AI applications in scientific computing, these
limitations can hinder performance or make learning
infeasible [7]–[9].

These challenges significantly impact the performance of
MLP-based models in general tasks and further exacerbate dif-
ficulties in tasks requiring specialized solutions. Consequently,
these drawbacks motivate researchers to explore alternative
theoretical frameworks for neural network design.
One promising approach is the integration of the Kol-
mogorov–Arnold Representation Theorem (KART) as a re-
placement for UAT. Proposed in 1957 by Kolmogorov [10]–
[12], KART states that any multivariable continuous function
can be represented as a finite sum of univariate continuous
functions. This theorem introduces potential advantages for
deep learning models:

• Dimensionality Reduction: By transforming multivari-



able functions into univariate components, KART offers
a way to mitigate the curse of dimensionality.

• Efficient Representation: KART-based networks allow
for efficient function decomposition, potentially reducing
the number of parameters required.

• Foundational Flexibility: Unlike affine-activation-based
MLPs, KART enables the construction of architectures
tailored to specific tasks.

Since KART’s proposal, many researchers have attempted to
incorporate it into neural network architectures, with works
such as [13]–[20]. These efforts aimed to leverage KART’s
theoretical advantages in practical applications. However, sev-
eral limitations hindered these models:

• Non-Smooth Representations: The inner functions in
KART decompositions are often highly non-smooth,
making them difficult to approximate with standard ar-
chitectures.

• Fixed Functional Forms: Traditional KART-based net-
works often imposed rigid structures, reducing their
adaptability to diverse tasks.

• Implementation Complexity: Determining and optimiz-
ing the internal functions of KART models involved cum-
bersome calculations, limiting their practical feasibility.

• Generalization Challenges: KART-based networks
struggled with generalizing to unseen data, particularly
in high-dimensional domains.

Building on the limitations of prior KART-based models, the
Kolmogorov–Arnold Networks (KAN) proposed in [21], [22]
introduce several improvements to make KART more practical
in modern deep learning. Key innovations include:

• Arbitrary Function Shapes: KAN allows the internal
functions to be represented with learnable parameters,
such as splines, overcoming the rigidity of traditional
forms.

• Advanced Training Techniques: KAN incorporates
modern optimization strategies, such as backpropagation
and regularization, to address training challenges.

• Enhanced Architectures: By designing architectures
with adaptable widths and depths, KAN extends KART’s
applicability to a broader range of tasks.

• Efficient Implementation: KAN leverages grid exten-
sions and other mechanisms to balance efficiency and
performance.

These improvements significantly enhance the practicality and
scalability of KART-based neural networks. The methodology
and innovations behind KAN will be explored in detail in the
following sections.
As a groundbreaking work published in 2024,
Kolmogorov–Arnold Networks (KAN) seamlessly
combine classical theoretical foundations with innovative
advancements. Revisiting key concepts such as the Universal
Approximation Theorem (UAT) and recently prominent
scaling laws [23], KAN also explores state-of-the-art methods
that are driving modern neural network research. This project
serves as a bridge for deep learning learners, offering both

Fig. 2: Example of KART Approximation

exposure to cutting-edge research and practical experience
in implementing advanced architectures. By reproducing
KAN, we further develop our engineering skills through the
programming of deep learning models using PyTorch and
TensorFlow, the two leading frameworks in the field.
In this report, we document our efforts to reproduce KAN
and share insights drawn from the original work and related
literature. Part 2 reviews KAN’s methodology and results,
while Part 3 outlines our approach to the project. Part 4
details the implementation process and key considerations in
code structure, followed by a comparison of results in Part 5.
Part 6 provides a discussion of the findings and observations.
Finally, Part 7 concludes the project and explores potential
future improvements.

II. REVIEW ON ORIGINAL WORK

A. Materials & Methods

1) Kolmogorov-Arnold Representation Theorem:
For Multi-Layer Perceptrons, one of the core theorems is
the universal approximation theorem (UAT), while the core
concept of the original paper is the Kolmogorov-Arnold
representation theorem, which states that any multivariate
continuous function f(x1, . . . , xn) can be expressed as a finite
composition of univariate functions and additions:

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (1)

where ϕq,p and Φq are univariate functions. A good example
for visualized KART approximation made by us can be
found in Fig. 2.One problem of this formula is that univariate
functions may be non-smooth, which means they may be
non-learnable. However, most functions are smooth and
have sparse compositional structures, so we can have a
smooth Kolmogorov-Arnold representation. This inspired
the development of KANs, which generalize the theorem to
deeper architectures.



2) KAN Architecture:
By the inspiration of MLPs, which stacks many layers to
obtain a deeper model, the original authors define the KAN
layer and stack layers to obtain a deeper model. KANs
are neural networks where weights are replaced by trainable
univariate spline functions. A KAN layer with nin inputs and
nout outputs is defined as:

Φ = {ϕq,p}, q = 1, . . . , nout, p = 1, . . . , nin.

This formula works since we can set first layer nin =
n, nout = 2n+1 and the second layer nin = 2n+1, nout = 1,
which exactly represent the Kolmogorov-Arnold representa-
tion (1). Moreover, in matrix form, each layer can be repre-
sented as:

Φl =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
. . .

...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl

(·)


For a neuron at layer l + 1 and position j, the value can be
computed:

xl+1,j =

nl∑
i=1

x̃l,j,i =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, . . . , nl+1

In matrix form,

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
. . .

...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl

(·)

xl

After defining layers, we can stack more KAN layers to obtain
a deeper model. The network’s output is a composition of these
layers:

KAN(x) = (ΦL ◦ ΦL−1 ◦ · · · ◦ Φ0)(x).

3) Approximation Theorem:
The original author provide a theorem that Theorem (Approx-
imation theory, KAT). Let x = (x1, x2, · · · , xn). Suppose
that a function f(x) admits a representation:

f = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)(x), (2)

where each Φl,i,j is (k+1)-times continuously differentiable.
Then there exists a constant C depending on f and its
representation, such that we have the following approximation
bound in terms of the grid size G: there exist k-th order B-
spline functions ΦG

l,i,j such that for any 0 ≤ m ≤ k, we have
the bound:

∥f − (ΦG
L−1 ◦ΦG

L−2 ◦ · · · ◦ΦG
1 ◦ΦG

0 )(x)∥Cm ≤ CG−k−1+m.
(3)

The authors proved the correctness of the theorem. By this
theory, KAN beats curse of dimensionality because the theory
states that KANs can approximate the function well indepen-
dent of dimension.

4) Techniques:
To improve accuracy, spline grids can be fine-grained during
training. This process adjusts spline coefficients to match a
finer grid, enhancing the network’s resolution without full
retraining. This is not feasible in traditional MLPs since we
cannot increase the length and width of the model during the
training. However, foe KANs, we can first train the model with
fewer parameters and then add some parameters by extending
the grid during the training.
To make KANs more interpretable, the original paper uses
techniques include:

• Sparsification: The authors define the L1 norm and
additional entropy regularization to favor sparsity.

• Pruning: The authors define two scores incoming scores
and outgoing scores:

Il,i = max
k

(∥ϕl−1,i,k∥1) , Ol,i = max
j

(∥ϕl+1,j,i∥1) .

They will consider the node important if and only if both
two scores are grater than the threshold. They will remove
unimportant neurons based on activation scores.

• Symbolification: An interface (fix-symbolic(l, i, j, f))
is provided to set the activation function of a specific
connection (l, i, j) to a symbolic function f . To address
the issue of shifts and scalings, the symbolic function is
adjusted to align with the model’s internal transforma-
tions using the formula:

y ≈ c · f(a · x+ b) + d,

where x represents preactivations (inputs) and y repre-
sents postactivations (outputs).

B. Results

1) Accuracy:
The original authors rigorously examines the accuracy of
Kolmogorov-Arnold Networks (KANs), establishing them as
a more effective alternative to multi-layer perceptrons (MLPs)
for representing complex functions. KANs and MLPs are
compared on various tasks, focusing on accuracy, parameter
efficiency, and scalability, using both theoretical analysis and
empirical experiments.
To evaluate the function-fitting capability of KANs compared
to MLPs, especially in tasks requiring high-dimensional or
compositional function representations. The comparison is
based on test RMSE and number of parameters.
In experimental design, the experiments involve five carefully
chosen functions with known smooth Kolmogorov–Arnold
(KA) representations:

1) f(x) = J0(20x): A univariate Bessel function.
2) f(x, y) = exp(sin(πx) + y2): A two-dimensional func-

tion with both sinusoidal and exponential components.
3) f(x, y) = x · y: A simple multiplicative function.
4) f(x1, . . . , x100) = exp

(
1

100

∑100
i=1 sin

2
(
πxi

2

))
: A high-

dimensional compositional function.



Fig. 3: Illustration of Spline Function from Original Work

5) A four-dimensional function requiring layered composi-
tional structures:

f(x1, x2, x3, x4) =

exp
(
sin
(
π(x2

1 + x2
2)
)
+ sin

(
π(x2

3 + x2
4)
) )

Through the whole experiment, KAN architectures varies in
depths and widths and employ grid extension, incrementally
refining the resolution of their spline-based activation func-
tions during training. Baseline models include MLPs with
depths ranging from 2 to 5 and varying node configurations
per layer. Both KANs and MLPs are trained using the LBFGS
optimizer for 1800 steps.
From the experiments, the result shows the superiority of
KANs.
KANs achieve lower test RMSE than MLPs across all five
tasks. Their scaling behavior matches the theoretical prediction
(ℓ ∝ N−4), where ℓ is the RMSE and N is the parame-
ter count. KANs consistently outperform MLPs in terms of
accuracy given the same number of parameters, particularly
in high-dimensional tasks. For tasks requiring compositional
structures, deeper KANs significantly outperform shallower
ones, similar to the expressive power gains observed in deeper
MLPs.

On the contrary, MLPs exhibit slower scaling laws, plateau-
ing quickly in accuracy as the parameter count increases.
Despite increased depth, MLPs struggle to approximate high-
dimensional compositional structures efficiently.

Unlike MLPs, which require retraining larger models for
better performance, KANs achieve finer accuracy by refining
the spline grids dynamically during training, as Fig. 3 from
original paper vividly illustrates. KANs’ unique architecture,
combining external and internal degrees of freedom, allows
them to effectively learn compositional structures and univari-
ate functions simultaneously. KANs achieve similar or better
accuracy with fewer parameters than MLPs, reducing memory
and computation requirements.

2) Interpretability:
KANs allow users to directly visualize and modify their in-
ternal components, making them inherently more interpretable
than MLPs. The architecture simplifies the understanding of
learned relationships, as KANs utilize learnable activation
functions represented as splines, which can often map directly
to symbolic expressions.

• Interaction with KANs for Symbolic Regression The
original authors illustrates how users can interact with
KANs to uncover symbolic relationships in data. Start-
ing with a larger network, users can iteratively apply
sparsification, pruning, and symbolification to derive in-
terpretable symbolic expressions. An example is given
where a regression task reveals the symbolic formula
f(x, y) = exp(sin(πx) + y2), demonstrating KANs’
effectiveness in symbolic regression tasks.

• Applications in Scientific Discovery KANs are partic-
ularly effective collaborators for scientists in discovering
underlying mathematical or physical laws. Two examples
are provided.
In mathematics, KANs could be used for tasks like knot
theory, where their structure simplifies complex relation-
ships. KANs help identify relationships in the study of
knots, uncovering functional dependencies between knot
invariants. This assists mathematicians in understanding
the geometric and topological properties of knots. By
using symbolic regression techniques, KANs provide
interpretable results that align with known theoretical
properties or suggest new conjectures.
In Physics, aiding in identifying key functional depen-
dencies, KANs are applied to problems like Anderson
localization. Anderson localization is a phenomenon in
condensed matter physics where waves become localized
due to disorder in the medium. KANs are applied to
analyze datasets related to this phenomenon, revealing
key symbolic relationships between system parameters
and localization effects. Their symbolic outputs provide
deeper insights into the interplay between variables, help-
ing physicists validate existing theories or propose new
mechanisms.

• Comparison to Symbolic Regression KANs are con-
trasted with traditional symbolic regression (SR) ap-
proaches by offering several advantages. They are robust
due to continuous optimization using gradient descent,
enabling them to handle noisy or complex data effec-
tively. KANs can approximate non-symbolic functions
using splines when no symbolic form exists, showcasing
their flexibility and adaptability. Additionally, their trans-
parency allows users to modify and debug the network
easily, which is critical for interpretability and usability.
In contrast, SR methods are often brittle and lack in-
termediate outputs, making them less interpretable and
harder to debug, which limits their practical applicability
in many real-world scenarios.

III. METHODOLOGY

A. Project Objective

The primary objective of this project is to reproduce
and analyze the Kolmogorov–Arnold Networks (KAN), a
groundbreaking neural network architecture proposed in 2024



Fig. 4: KAN’s Evolution

as we have mentioned above. KAN builds upon the Kol-
mogorov–Arnold Representation Theorem (KART) while ad-
dressing the limitations of traditional MLPs as well as earlier
KART-based models. Specifically, our goals include:

1) Reproducing the Original Results:
The first objective is to faithfully implement the KAN ar-
chitecture as described in the original paper, including its
spline-based activation functions, grid extension strategy, and
interpretability mechanisms. This involves constructing KAN
layers where weights are replaced by learnable spline func-
tions and ensuring the composition of these layers adheres
to the theoretical underpinnings of KART. By conducting
experiments on benchmark tasks, we aim to validate the
authors’ claims regarding KAN’s superior accuracy, parameter
efficiency, and scaling behavior when compared to traditional
MLPs.

2) Performance Validation:
To comprehensively evaluate KAN’s capabilities, our second
objective is to assess its performance across tasks requiring
compositional and high-dimensional function representations.
Specifically, we will Compare the approximation accuracy and
parameter efficiency of KAN and baseline MLPs using test
RMSE on benchmark functions. We’ll also examine KAN’s
robustness under different levels of noise and investigate
the impact of grid extension on its ability to refine learned
representations dynamically. This analysis will allow us to
verify the theoretical claims regarding KAN’s resilience to the
curse of dimensionality and its adaptive learning capabilities.

3) Comparative Analysis:
A key component of this project is the comparative analy-
sis of KAN with conventional neural network architectures,
particularly MLPs. We aim to answer critical questions, such
as: How does KAN scale with increasing parameters and task
complexity compared to MLPs? What are the computational
trade-offs associated with KAN’s spline-based activations and
grid extension mechanism? By analyzing convergence behav-
ior, parameter efficiency, and computational costs, we aim to
provide insights into the practical advantages and challenges
of KAN over baseline models.

4) Technical Innovations Exploration:
The final objective is to explore and analyze the key tech-
nical innovations introduced in KAN, which include grid
extensions, sparsification, pruning, and symbolic regression
capabilities. Specifically, we aim to: Evaluate the impact of
grid refinement on model accuracy and parameter growth.
And we’ll implement interpretability techniques such as L1-

based sparsification and activation-based pruning to identify
and visualize critical components of the network. And we’ll
also investigate KAN’s potential for symbolic regression by
extracting interpretable relationships from learned models.
These explorations will enable us to better understand KAN’s
flexibility, interpretability, and scalability, offering valuable
insights into its potential applications in scientific discovery
and other fields.

5) Identification of KAN’s Limitations:
While KAN introduces significant advancements in function
approximation and interpretability, we aim to objectively ana-
lyze its potential limitations. These include increased compu-
tational overhead due to spline-based activations, implemen-
tation complexity arising from dynamic grid extensions, and
uncertainties regarding scalability and generalization to large-
scale tasks. By evaluating these aspects, we provide a balanced
perspective on KAN’s strengths and areas for improvement.
By addressing these objectives, this project aims to rigorously
validate the theoretical and empirical contributions of KAN,
while providing a detailed analysis of its strengths, limitations,
and practical utility. The outcomes of this work will not only
reproduce the original findings but also pave the way for
further improvements and applications of KAN in modern
neural network research.

B. Challengenges
The reproduction of Kolmogorov–Arnold Networks (KAN)

presented considerable challenges due to its large codebase,
technical intricacies, and lack of standardized tools.

1) Codebase Size & Implications:
First, KAN’s repository demonstrates a significant scale com-
pared to similar works, reaching over 6000 lines of .py files
alone, far surpassing well-known projects such as Residual At-
tention Networks (about 1030 lines) and SimCLR (about 2500
lines) as shown in Fig. 5. While code size does not inherently
determine the complexity or quality of a project, it is an unde-
niable factor that correlates with reproduction difficulty. Larger
codebases tend to introduce layers of interdependence and
abstraction, requiring careful reverse-engineering to decipher
their functional relationships. Additionally, KAN, as a novel
2024 work, lacks the encapsulated design and mature tooling
typically seen in more established frameworks. This absence
exacerbates the effort needed to dissect and reconstruct the
core components of the architecture, making the reproduction
process far more laborious than for earlier, better-documented
models.

2) PyTorch to TensorFlow:
Second, a significant challenge arises from the need to port
KAN from PyTorch to TensorFlow, which substantially in-
creases the reproduction workload. PyTorch’s dynamic com-
putational graph and flexibility are core to the original im-
plementation, yet TensorFlow, particularly when leveraging
its Keras abstraction, often requires static graph definitions
and explicit handling of intermediate operations. Such dis-
crepancies necessitate a manual reimplementation of the KAN
architecture. Most critically, the KAN layers and multi-layer



Fig. 5: Original Codebase Size for All Papers

KAN composition—which rely on custom spline-based activa-
tions—cannot take advantage of TensorFlow’s existing high-
level tools like functional APIs or pre-built layers. Unlike
common architectures such as ResNets or LSTMs, where
TensorFlow equivalents are readily available, KAN demands
the reconstruction of its layers entirely from scratch. This lack
of reusable templates places a greater coding burden on the
implementation team, requiring precision to align with the
original design while maintaining computational efficiency and
correctness.

3) Grid Extension Mechanism:
Third, KAN’s grid extension mechanism introduces additional
technical challenges during implementation. Unlike conven-
tional networks with static parameters, KAN dynamically
refines its spline activations by expanding the resolution of
the underlying grid during training. While this innovation is
essential to KAN’s success, it complicates reproduction due to
the need for careful handling of parameter updates to ensure
smooth transitions and numerical stability. At the same time,
the grid extension process increases computational overhead,
both in terms of memory usage and training time. Achieving
an efficient implementation under limited hardware resources
requires a delicate balance between grid refinement and overall
model scalability.

4) Interpretability Techniques:
Finally, KAN’s interpretability features, including sparsifica-
tion, pruning, and symbolification, further elevate the com-
plexity of the reproduction process. These techniques aim
to enhance the transparency of the network by identifying
and isolating critical neurons or connections. However, imple-
menting these features demands robust scoring mechanisms
to evaluate node importance while ensuring consistency with
the original architecture. Aligning learned spline activations

with symbolic representations introduces an additional layer of
difficulty, as it requires preserving accuracy and interpretability
without undermining the network’s performance.
In summary, reproducing KAN is not merely a matter of
following existing code but requires overcoming its exten-
sive codebase, the complexities of PyTorch-to-TensorFlow
migration, and the technical demands of implementing grid
extension and interpretability mechanisms from scratch. These
challenges, while significant, also provide an opportunity to
deeply understand KAN’s architecture and its novel contribu-
tions. In the following sections, we will demonstrate how we
addressed these difficulties, ensuring fidelity to the original
work while leveraging the flexibility of TensorFlow to adapt
KAN’s methodology. Through this process, we aim not only
to faithfully reproduce the results but also to highlight the
strengths of KAN’s design and explore the potential advan-
tages that arise from our implementation approach.

C. Key Ideas for Project
To implement the TensorFlow-based KAN model, we focus

on achieving a minimal yet functional design while preserving
the core principles of the original PyTorch implementation.
Compared to PyTorch, which uses a dynamic computation
graph and simplifies gradient handling, TensorFlow requires
a more structured approach to ensure equivalent functionality.
The model architecture combines numerical and symbolic
components to replicate the original behavior. At its core, the
numerical computations rely on grid-based spline interpolation
to approximate activation functions. This mechanism enables
the model to capture complex nonlinear relationships. In
TensorFlow, we redefine this functionality using adaptive
B-splines. Grid points are updated dynamically based on
input data, ensuring the model can adapt effectively. Although
the PyTorch implementation benefits from its flexibility,
TensorFlow achieves the same dynamic behavior through
operations like tf.concat and tf.linalg.solve,
which efficiently handle grid updates.
In addition to numerical components, the symbolic
pathway provides explicit symbolic mappings for
greater interpretability. Unlike PyTorch, where symbolic
transformations are easier to integrate due to its dynamic
execution, TensorFlow requires careful coordination between
numerical operations and algebraic manipulations. To address
this, we adopt a modular design where both computations
occur in parallel. The outputs from the numerical and symbolic
components are merged seamlessly during the forward pass,
ensuring consistency with the original implementation.
The optimization process introduces further differences.
PyTorch offers a built-in LBFGS optimizer with support
for advanced line search. However, TensorFlow requires
a custom implementation to achieve similar results. In
our version, the LBFGS algorithm is adapted using Wolfe
condition-based line search and manual gradient updates.
TensorFlow’s automatic differentiation computes gradients
efficiently, allowing the optimizer to handle the model’s
high-dimensional and non-convex optimization challenges.



To evaluate the TensorFlow-based implementation, we
designed experiments focusing on a minimal reproduction of
the original model’s key features. These include spline-based
activation functions, adaptive grid updates, and symbolic
reasoning. Instead of replicating the entire PyTorch setup,
we concentrated on essential functionalities to ensure clarity
and performance. For comparison, we tested the TensorFlow
KAN against baseline models such as Keras-based MLPs.
The results show that our implementation successfully fits
symbolic functions and models complex relationships while
maintaining simplicity.

IV. IMPLEMENTATION

A. Dataset
As a novel architecture, Kolmogorov–Arnold Networks

(KAN) have garnered attention for their remarkable inter-
pretability. However, their applicability is by no means lim-
ited to a specific domain. On the contrary, as an emerging
approach, KAN’s potential should be thoroughly explored
across diverse deep learning tasks to validate its versatil-
ity and robustness. In this reproduction study, we focus on
KAN’s scientific applications, where its exceptional func-
tional approximation and interpretability capabilities can be
most prominently demonstrated.
Unlike other works that focus solely on single-domain tasks
such as image recognition, our objective is to expand the
scope of KAN by applying it to multiple classical scientific
machine learning tasks. To achieve this, we carefully prepared
a collection of datasets that are not only representative of their
respective tasks but also capable of producing insightful and
demonstrative results using KAN. The datasets are introduced
as follows:

1) Special Function Datasets:
To evaluate KAN’s ability to approximate complex mathe-
matical functions, we construct datasets based on well-known
special functions. These include the Bessel function J0,
logarithmic combinations, and simple trigonometric functions.
For instance, one of the target functions is defined as:

f(x) = exp(J0(20x0) + x2
1),

where J0 is the zeroth-order Bessel function of the first
kind. Another example involves logarithmic and sinusoidal
components:

f(x) = sin (2(log(x0) + log(x1))) .

These datasets serve as benchmarks to assess the accuracy,
parameter efficiency, and functional approximation capabilities
of KAN.

2) Moon Dataset (Classification Task):
The Moon dataset, a standard two-class classification problem,
whose distribution can be found in Fig. 6, is employed to
test KAN’s ability to learn non-linear decision boundaries. By
integrating custom functional mappings (e.g., Bessel functions

Fig. 6: Moon Dataset Distribution

and exponentials), we introduce additional complexity to the
classification task. This dataset provides a straightforward yet
insightful demonstration of KAN’s performance in handling
non-linear classification challenges.

3) PDE Solving Dataset:
For scientific applications, we employ a dataset derived from
solving the second-order elliptic partial differential equation
(Laplace’s equation) over a square domain:

−∆u(x, y) = f(x, y), Ω = [−1, 1]× [−1, 1],

where ∆ is the Laplace operator:

∆u =
∂2u

∂x2
+

∂2u

∂y2
.

The exact solution is given by:

u(x, y) = sin(πx) sin(πy),

and the corresponding source term is:

f(x, y) = −2π2 sin(πx) sin(πy).

This dataset evaluates KAN’s ability to approximate solutions
to PDEs, a fundamental problem in scientific computing, and
highlights its strength in modeling continuous domains.

4) Gaussian Peaks Dataset (Continual Learning):
To demonstrate KAN’s potential in continual learning sce-
narios, we construct a Gaussian Peaks dataset featuring mul-
tiple peaks distributed across the input space. The peaks are
sequentially introduced to the model, allowing us to evaluate
KAN’s ability to adapt to new data distributions while re-
taining knowledge of previously learned patterns. This dataset
is particularly suited to test KAN’s capacity for learning
in dynamic and evolving tasks, a crucial aspect of modern
machine learning models.
Based on the datasets described above, we aim to accomplish
a series of cross-domain scientific machine learning tasks
that include function approximation, classification, numerical
PDE solving, and continual learning. This comprehensive



evaluation not only verifies KAN’s outstanding performance
but also demonstrates its versatility and applicability in various
scientific domains.

B. Software Structure
The project develops a tensorflow 2.14.0 based architecture

leveraging Kolmogorov-Arnold Networks (KAN) to approx-
imate complex multivariate functions with high precision.
This is implemented through TensorFlow tools and includes
innovative layers and optimization techniques. Below is a
detailed breakdown of the key components of the codebase.

1) KANLayer Implementation (KANLayer.py):
The KANLayer class serves as the fundamental building block
of the KAN architecture, introducing a grid-based approach
for function approximation. Its implementation uniquely sup-
ports trainable coefficients, leveraging B-spline techniques
(curve2coef) for smooth curve reconstruction, while offering
optional sparse connectivity through a mask mechanism. The
forward pass integrates pre-activation transformations and
splines, ensuring efficient computation and adaptability across
various input dimensions.

2) Optimization Framework (LBFGS.py):
The LBFGS.py module provides an advanced line search opti-
mizer tailored for high-dimensional KAN models. A standout
feature is its robust cubic interpolation for determining optimal
step sizes, integrated seamlessly with TensorFlow operations.
The implementation emphasizes precision through the Strong
Wolfe conditions, ensuring stability and convergence, making
it ideal for handling the intricate parameter spaces inherent in
KAN architectures.

3) Symbolic Representation (Symbolic KANLayer.py):
The Symbolic KANLayer extends KAN’s utility by incor-
porating symbolic computation via SymPy, enabling math-
ematical interpretability alongside numerical evaluations. Its
key innovation lies in supporting singularity-robust activation
functions, affine transformations of the form , and symbolic
function manipulation, catering to tasks where explicit formu-
lae are critical for verification or theoretical analysis.

4) Multi-Layer KAN Architecture (MultKAN.py):
The MultKAN class builds upon individual KANLayer in-
stances to create a deep, multi-layered KAN model. This im-
plementation supports dynamic grid refinement for improved
approximation accuracy and integrates multiplication nodes for
complex feature interactions. A notable feature is the ability
to checkpoint and restore model states, enabling iterative
model enhancements and robustness during extensive training
procedures. We also incorporated many tools for KAN analysis
in MultKAN which played key roles in our experiments.

5) Spline-Based Utilities (spline.py):
This module encapsulates the mathematical backbone of
KAN layers, implementing core functionalities for B-spline
evaluations and transformations. Functions like B batch and
coef2curve ensure seamless transitions between spline coef-
ficients and curves, critical for the accurate representation
of multivariate functions. Its recursive computation structure
highlights flexibility and efficiency in basis evaluation.

Fig. 7: Pipeline of Our KAN Approximation of esin(πx1)+x2
2

6) Utility Functions (utils.py):
The utils.py module offers versatile helper functions to stream-
line dataset preparation, input augmentation, and sparsity
induction. Its create dataset function generates symbolic data
with customizable normalization and range settings, while
augment input enriches feature spaces with symbolic trans-
formations. Sparse masks generated by sparse mask align in-
puts and outputs, optimizing computational efficiency without
sacrificing accuracy.

7) Integration and Experimentation:
The components described above are integrated to form a flex-
ible framework for testing KAN architectures. The following
experimentation steps are recommended:

• Model Initialization: Use MultKAN with appropriate
hyperparameters to define the architecture.

• Training: Train the model using LBFGS or standard
optimizers with spectral or symbolic objectives.

• Evaluation: Evaluate performance using custom datasets
or benchmarks, leveraging symbolic capabilities for anal-
ysis.

• Visualization: Use matplotlib and symbolic outputs for
visual validation of results.

V. RESULTS

A. Project Results
1) KAN Approximation on Math Formula: In the first

experiment, we explored the foundational capabilities of the
KAN in approximating data distribution functions with mini-
mal complexity. The results demonstrates that even a minimal-
width KAN architecture (2, 5, 1) is capable of flexibly
approximating the target function

f(x) = esin(πx1)+x2
2

after limited epoch os basic training. Remarkably, the network
autonomously identified and effectively ”pruned” unnecessary
neurons, focusing only on the key components needed for
accurate approximation. This dynamic adaptability is evident
from the training results, where the model aligns closely with
the ground truth without overfitting or underutilizing its struc-
ture. Further enhancements to accuracy were achieved through
iterative pruning and refinement techniques. The additional



refinement stages demonstrated the network’s ability to push
its approximation capabilities to higher precision, underlining
its superiority over traditional MLPs in terms of efficiency
and flexibility. This success in faithfully reproducing KART
sets the stage for establishing KAN as a viable replacement
for conventional MLP architectures in complex approximation
tasks.
Who Pipeline of results from this experiment can be found
in Fig. 7, The results provide a strong foundation for fur-
ther exploration of KAN’s theoretical limits. Specifically, the
potential for infinite approximation via grid refinement, as
discussed in the next experiment, builds on this demonstration
of adaptability and precision.

2) Impact of Grid Refinement: The second experiment
delves into the relationship between grid size and KAN’s
approximation performance. Incrementally increasing the grid
resolution revealed a clear pattern: each increase in grid size
caused the model’s loss to rapidly decline from previously
plateaued values, achieving a new level of accuracy before
plateauing again. This behavior provides strong empirical evi-
dence supporting KART’s assertion that KAN can approximate
any function to arbitrary precision, given a sufficiently large
grid.
However, while theoretically compelling, this capability comes
with practical engineering considerations. Our analysis iden-
tified three critical trade-offs that limit the utility of infinite
grid refinement in real-world applications–and in engineering
especially:

• Diminishing Returns
Although increasing grid size improves approximation
accuracy, the incremental improvement becomes progres-
sively smaller as grid resolution grows. This is evident in
the experimental data of Fig. 8, where the rate of loss
reduction slows significantly after each grid increment.

• Increased Computational Cost
Higher grid resolutions substantially increase the total
number of trainable parameters, thereby requiring more
computational resources. This imposes practical limits
on grid refinement, particularly in resource-constrained
environments.

• Generalization Limits
While the fit to the training data improves with grid
size, the generalization loss reaches a plateau at a certain
grid level as shown in Fig. 8, and, in some cases,
deteriorates as grid size becomes excessively large. This
phenomenon underscores the risk of overfitting when
prioritizing precision over generalization.

Based on these observations, we conclude that while grid
refinement is a powerful tool for improving approximation
accuracy, it must be balanced against computational efficiency
and generalization performance. These considerations provide
valuable guidelines for determining optimal grid sizes in
practical implementations.

3) KAN Depth Analysis: In this experiment, we analyze the
effect of network depth on the Kolmogorov-Arnold Network’s

Fig. 8: How Grid changes Performance
(Each 25 steps for a larger Gird)

(KAN) ability to approximate the complex function:

f(x) = exp

(
sin
(
πr21
)
+ sin

(
πr22
)

2

)
,

where r21 = x2
1 + x2

2 and r22 = x2
3 + x2

4

The results reveal that the depth of the network plays a critical
role in determining KAN’s approximation capacity for any
certain math formula (distribution of dataset). Specifically, the
three-layer KAN (width=[4,2,1,1]) outperforms the two-layer
KAN (width=[4,9,1]) by a significant margin, despite the latter
having more neurons and parameters. This finding underlines
a fundamental property of KAN: depth enhances the network’s
ability to model compositional structures, even in cases where
a shallower network is substantially wider.
The superior performance of the three-layer KAN in Fig.
9 highlights the expressive power of deeper architectures.
By structuring its layers hierarchically, the three-layer KAN
effectively partitions and captures the compositional com-
ponents of the target function compared with the two-layer
KAN. This outcome demonstrates that merely increasing the
number of parameters or neurons in a shallow network cannot
substitute for the hierarchical representational capabilities af-
forded by deeper architectures. This property is consistent with
observations in traditional Multi-Layer Perceptrons (MLPs),
suggesting that KAN shares some key characteristics with
MLPs. As a result, the findings provide theoretical support
for KAN’s potential to replicate many functionalities typically
associated with MLPs, broadening the applicability of KAN
in machine learning tasks. We conclude the expressive result
of this experiment on depth in Fig. 10. Beyond depth’s role
in enhancing expressiveness, the experiment also emphasizes
the importance of selecting an appropriate network structure
for specific functions. The success of the three-layer KAN
underscores the significance of architectural design in achiev-
ing optimal performance. In this case, the function’s compo-
sitional complexity aligns well with the three-layer network’s



Fig. 9: width=[4,2,1,1]) Performance

hierarchical capabilities, enabling it to achieve significantly
better results than the two-layer counterpart. Conversely, the
two-layer KAN’s subpar performance highlights the risks of
inadequate depth, even when computational resources are
heavily invested in wider layers.
This finding has important implications for engineering
and practical implementations of KAN as when designing
KAN architectures, a one-size-fits-all approach is insuffi-
cient—optimal performance depends on selecting the right
depth for the task at hand. For problems where the data
distribution or function structure is known, prior knowledge
can guide the design of an architecture that aligns with the
function’s compositional properties. This experiment not only
validates the theoretical advantages of deeper KAN architec-
tures but also reinforces the practical need for careful depth
selection in model design. These findings pave the way for
future research into leveraging KAN’s depth-based properties
in specialized applications, particularly those where a priori
knowledge about data distribution can inform model design
for optimal performance.

4) Capability of Classification: In this experiment, we
applied KAN to solve a binary classification task using Moon
Dataset. We used a shallow KAN architecture with 2 layers
(width: [2, 2]) and a grid size k = 3, which controls the
complexity of the activation functions. For optimization, we
chose the LBFGS optimizer with a learning rate of 0.001 and
performed 5 optimization steps. The train accuracy and test
accuracy were used to evaluate the model’s performance.
The experiment achieved promising results as is mentioned
in the original paper. The shallow KAN obtained a train

Fig. 10: Depth & Loss for Both Models and
Both Implementations

accuracy of 0.879 and a test accuracy of 0.888, showing that it
can accurately learn the non-linear decision boundaries of the
dataset. Additionally, the KAN model generated interpretable
symbolic formulas that approximated the decision boundary.

TABLE I: Decision Boundaries and Accuracy of
PyTorch-KAN

Boundary 1 -15.0316x1 + 177.9349x2 –
63.0716

Boundary 2 60.4718x1 – 156.0295x2 +
16.9

Training Accuracy 0.887

Testing Accuracy 0.881

TABLE II: Decision Boundaries and Accuracy of
TensorFlow-KAN

Boundary 1 -215.5785x1 + 758.3895x2 –
103.973

Boundary 2 214.1306x1 - 755.6062x2 +
98.0888

Training Accuracy 0.879

Testing Accuracy 0.888

This result highlights KAN’s ability to provide both high ac-
curacy and symbolic interpretability. Unlike traditional neural
networks, which produce black-box outputs, KAN can reveal
the underlying mathematical structure of the data, making it
more transparent and insightful for analysis.



At the same time, it is important to recognize the limitations
of a shallow architecture in classification tasks. While the two-
layer KAN achieved strong performance on this relatively sim-
ple two-moon dataset, deeper architectures may be necessary
for more complex classification problems, such as those with
highly non-linear or hierarchical decision boundaries. Previ-
ous experiments on KAN depth analysis have demonstrated
that a three-layer KAN can significantly outperform a wider
two-layer version. This improvement occurs because deeper
networks are better at learning and representing compositional
decision boundaries, even when the shallower networks have
a larger number of parameters. This finding is consistent
with results observed in traditional MLPs, where increasing
network depth often leads to better performance by enabling
the model to capture higher-level feature relationships in the
data.

From this experiment, it is shown that KAN has the capa-
bility of handling tasks in different scenarios. Nevertheless,
after we further compare different settings of our model,
analysis points out some factors which should be considered
in classification applications:

• Network Depth
Shallow networks, like the two-layer KAN used here, can
perform well on relatively simple tasks such as the two-
moon dataset. However, for more complex or hierarchical
data, deeper networks are needed to capture composi-
tional structures effectively. Deeper networks can achieve
better expressiveness, whereas wider shallow networks
may reach their limits on such tasks.

• Grid Size and Complexity of Activation Functions
Increasing the grid size and depth of the KAN improves
accuracy and allows the model to better approximate
complex decision boundaries. However, this comes at
the cost of higher computational complexity and longer
training times, which need to be carefully managed
depending on the application.

• Noise and Data Variability
The presence of noise in the data can affect the network’s
performance. While KAN performs well on noisy datasets
(as shown in the two-moon experiment), careful regular-
ization or fine-tuning may be needed for more challenging
data distributions.

5) Performance on Special Functions: To see if multivari-
ate special functions could be written in KA representations
, we evaluate the KAN model for its ability to approximate
the target function f(x, y) = exp

(
J0(20x) + y2

)
, involving

the zero-order Bessel function J0(20x). The ground truth
data was generated using ’scipy.special.j0’, while a Taylor
series approximation of J0 was used during training. Symbolic
regression analyzed the recovered structure, and a custom J0
approximation was added to the symbolic library to improve
interpretability. Performance was assessed through test loss
and symbolic recovery.

However, when compared to the result shown in the original
paper, the symbolic regression using our model did not explic-

TABLE III: Top 5 Suggested Symbolic Function using
PyTorch-KAN

RANK Function Fitting Loss

0 J0 -1.166097

1 0 0.000003

2 x 0.799540

3 cos 1.346963

4 sin 1.346963

TABLE IV: Top 5 Suggested Symbolic Function using
TensorFlow-KAN

RANK Function Fitting Loss

0 sin -0.874493

1 x2 -0.874220

2 cos -0.873947

3 0 0.000003

4 gaussian 0.089003

itly recover the Bessel structure, and the fitting loss remained
relatively high. To make it clear, we analyzes the reasons
behind the observed limitations and identifies possible areas
for improvement.

• Coefficient Range Issue
The coefficient 20 in J0(20x) falls outside the default
symbolic search range of (−10, 10). KAN’s symbolic
regression process is constrained to this range, which
makes it difficult for the model to identify the correct
structure. While expanding the search range to (−80, 80)
improved the fitting, the exact J0 structure still did
not emerge. This highlights the importance of adjusting
search boundaries when working with functions involving
large coefficients.

• Approximation Precision
The ground truth data for J0 was generated using
the high-precision implementation from ’scipy.special.j0’,
whereas training relied on a Taylor series approximation
of J0. The approximation introduces slight inaccuracies,
particularly for larger values like 20x, which deviate
from the ground truth. These inconsistencies may have
affected KAN’s ability to recognize the correct symbolic
representation.

• Data Inconsistency
A mismatch exists between the target function’s ground
truth data and the approximated version used during train-



ing. While the symbolic regression process attempts to
minimize error based on the training data, discrepancies
between the approximated and true values of J0 introduce
noise, reducing the accuracy of symbolic recovery.

• Model Bias Toward Simplicity
KAN exhibits a tendency to prioritize simpler symbolic
terms, such as sin(x), cos(x), and polynomials like x2.
Even after expanding the search range, the model favored
low-complexity solutions that minimize the total loss
efficiently. This behavior reflects KAN’s bias toward
lower complexity terms, which helps reduce overfitting
but may limit its ability to represent highly specialized
functions like J0.

The observed limitations also offer valuable insights for
improving KAN’s performance on similar tasks. For target
functions with large coefficients, it becomes necessary to
expand the symbolic search range to identify higher-scale
components effectively. Automating this process could make
the model more robust and adaptable. At the same time,
using a more accurate J0representation—such as higher-order
Taylor expansions or more precise implementations—could
help reduce inconsistencies and improve symbolic recovery.

6) Solving Partial Differential Equation (PDE): To intro-
duce the application of solving PDEs, we use the KAN model
to solve a 2D Poisson equation:

∇2f(x, y) = −2π2 sin(πx) sin(πy),

with boundary conditions f(−1, y) = f(1, y) = f(x,−1) =
f(x, 1) = 0 and ground-truth solution f(x, y) =
sin(πx) sin(πy). The KAN architecture had a width of [2, 2, 1]
and polynomial order k = 3. The first layer activations
were set as linear functions, and the second layer used sine
functions. Training utilized the LBFGS optimizer with a loss
combining interior PDE constraints and boundary conditions,
alongside dynamic grid refinement to enhance resolution dur-
ing training.
The loss function combines the PDE loss, obtained via the
Laplacian (second derivative) of the KAN output using au-
tomatic differentiation, and the boundary loss, which mini-
mizes discrepancies at boundary points. Interior points were
generated using a mesh grid, while boundary points were
explicitly defined. The LBFGS optimizer was employed for
efficient convergence, and dynamic grid updates refined the
grid resolution during training to improve accuracy. The results
showed that KAN approximated the solution with a PDE loss
of 7.47× 10−2 and an L2 loss stabilizing at 4.58× 10−3.
From the comparison between our experimental results and

those reported in the original paper, several factors could
explain the differences in PDE loss and training time. One
possible reason lies in the optimizer settings. While the
original paper employs the LBFGS optimizer with specific
line search configurations, subtle differences in how step sizes
or gradients are managed in the TensorFlow implementation
may lead to slower convergence and higher loss.
Another contributing factor could be the grid adaptivity mech-
anism. In the TensorFlow version, dynamic grid updates might

TABLE V: Comparison of the Two Models in Solving PDE

Model Loss L2 Loss Training
Speed

PyTorch-
KAN

2.83e− 02 3.78e− 03 1.20s/it

TensorFlow-
KAN

7.47e− 02 4.58e− 03 16.85s/it

not be as efficient as in the PyTorch implementation. Variations
in numerical precision or the refinement strategy could cause
the grid to misalign with the data distribution, increasing
approximation errors in the spline-based activations.
The batch Jacobian computation may also introduce overhead
in TensorFlow. Unlike PyTorch’s more flexible dynamic graph,
TensorFlow’s static computation graph could lead to additional
delays during each optimization step, which impacts training
efficiency.
Finally, differences in hyperparameter settings, such as the
number of training steps, learning rate, or the weighting factor
alpha for loss balancing, may also contribute to the observed
results. Fine-tuning these parameters, particularly the trade-off
between PDE loss and boundary condition loss, could be key
to improving performance.

7) PDE Loss Accuracy Analysis : We aim to solve the
same second-order elliptic partial differential equation (PDE)
to test its accuracy. The loss function for our model combines
the PDE residual loss LPDE and the boundary condition loss
LBC:

L = α · LPDE + LBC,

where:

LPDE =
1

Ni

Ni∑
i=1

(∆uθ(xi)− f(xi))
2
,

LBC =
1

Nb

Nb∑
i=1

(uθ(xb)− utrue(xb))
2
.

The model is optimized using the LBFGS optimizer over 50
steps. Internal grid points xi are sampled uniformly across the
domain, while boundary grid points xb are extracted along the
domain boundary.

During training:

• PDE residual loss LPDE is minimized to enforce the
equation constraints inside the domain.

• Boundary condition loss LBC ensures the model satisfies
the boundary conditions.

• The overall L2-squared loss measures the total error be-
tween the model’s prediction and the analytical solution.

The loss curves during training are shown below:
From the figure, we observe:



Fig. 11: Loss curves during training: PDE loss, boundary
condition loss, and L2 squared error.

• PDE Loss (blue curve): It decreases gradually, with step-
wise drops corresponding to adaptive grid refinement.
This can indicate improved approximation of PDE.

• Boundary Condition Loss (orange curve): It drops quickly
and and become stable, which showed that the model
effectively satisfies the boundary conditions.

• L2 Squared Loss (green curve): It also decreases gradu-
ally with step-wise drops. This shows the overall conver-
gence towards the true solutio is quite good.

The results demonstrate that the KAN model successfully
approximates the PDE solution. Grid refinement significantly
improves the model’s accuracy, as seen from the step-wise
drops in PDE loss. The final losses converge to small values,
which means that the model learns the solution effectively.

8) Continual Learning: This experiment uses a Kernel-
based Adaptive Network (KAN) to approximate a function
composed of multiple Gaussian peaks. The function is defined
as the sum of Gaussian peaks:

y(x) =

npeak∑
i=1

exp(−300 · (x− ci)
2), x ∈ [−1, 1],

where ci represents the centers of the Gaussian peaks, calcu-
lated as:

ci =
2

npeak

(
i−

npeak

2
+ 0.5

)
.

A continuous grid xgrid is defined with nsample = 500 points
uniformly spaced over the range [−1, 1]. For each peak, a
subset of nnum per peak = 100 points is sampled locally around
its center ci. The sampled data points are used for training.
The KAN model is initialized with the following parameters:
input dimension 1, output dimension 1, grid resolution 200,
spline order k = 3, and noise scale 0.1. Both scaling parame-
ters for the spline and base functions are set as non-trainable

(sp_trainable=False and sb_trainable=False),
and the base function is zero.
During training, the model sequentially learns data correspond-
ing to each Gaussian peak. For each peak, a subset of sampled
points xtrain and corresponding labels ytrain are extracted. The
model is then trained for 50 steps using the LBFGS optimizer
with a learning rate of 10−5. The results show that the train
and test losses converge to very small values (on the order of
10−6), indicating quite good approximation accuracy.
This kind of sequential training approach enables the model
to learn the localized features of each Gaussian peak without
forgetting previously learned peaks. This demonstrates the
effectiveness of continual learning with KAN. The grid reso-
lution of 200 points allows the model to capture fine details of
the Gaussian peaks. This experiment highlights the capability
of KAN in continual learning.

9) Singularity Case: This document analyzes the ability
of KAN to approximate functions containing singularities and
their corresponding symbolic expressions. Two functions are
studied to demonstrate the model’s strengths and limitations.
Example 1: Logarithmic and Sine Singularities
In the first example, the target function contains logarithmic
and sine components:

f(x, y) = sin(log(x) + log(y)).

This function introduces singularities at x = 0 and y = 0,
where the logarithmic terms become undefined. To address this
issue, the dataset is constructed in the range x, y ∈ [0.2, 5],
avoiding the problematic singularity points.
The KAN model is initialized with:

• Input dimension: 2,
• Output dimension: 1,
• Grid size: 5,
• Spline order: k = 3.

The model is trained using the LBFGS optimizer with a
learning rate of 10−4 for 20 steps. During training, the
symbolic components are explicitly fixed to match the loga-
rithmic and sine structure. After training, the learned symbolic
formula is extracted and rounded for simplicity. The resulting
expression is: 0.003 − 0.938 sin(1.833 log(x1) − 0.397) +
1.903 log(9.987x2 + 0.112) − 10.942. This formula does ap-
proximate the original target function, which means in this
case, singularity does not seem to be a problem.
Example 2: Square Root and Multiplicative Singularities
The second example considers a function with square root and
multiplicative components:

f(x, y) =
√
x2 + y2 · x.

This function introduces a singularity at y = 0, where the
square root term may cause numerical instability. The dataset
is constructed in the range x, y ∈ [−1, 1], covering the entire
domain.
The KAN model is initialized with the same configuration as
the first example. Despite these fixes, the extracted symbolic



formula does not fully match the original function. The learned
expression is:

1.01
√
x2
1 + x2

2 − 0.01.

While the square root term is captured, the explicit multiplica-
tive term x is not accurately represented. This discrepancy
highlights a limitation in the current symbolic fixing process.

• In the first example, the KAN model successfully ap-
proximates the target function by fixing the symbolic
components (log and sin).

• In the second example, while the model captures the
square root term, it fails to accurately represent the
multiplicative component x.

The KAN model shows some capacity of dealing with singu-
larity case. However, some functions such as functions with
complex multiplicative terms, it can not output the correct
function.

10) Comparison Among models: In this experiment of
comparison, three architectures of deep learning models are
used to further study the intrinsic magic of KAN and its
weakness.

• KAN (Kernel-based Adaptive Network): A model con-
sisting of adaptive grid-based kernel layers to approxi-
mate complex functions with higher interpretability and
efficiency. It leverages spline-based interpolation tech-
niques to handle nonlinear relationships.

• KANLayer with Keras: A simplified implementation
of KAN layers integrated into the TensorFlow Keras
framework. The model uses a Sequential architecture
with KANLayer components, for instance:

model = tf.keras.models.Sequential(
KANLayer(in_dim=2, out_dim=5),
KANLayer(in_dim=5, out_dim=1)).

Here, each KANLayer replaces the traditional dense
layers with spline-based functional approximations.

• MLP (Multi-Layer Perceptron): A fully connected neural
network serving as the baseline model. The architecture
typically includes dense layers with nonlinear activation
functions (e.g., ReLU) for function approximation.

The experiments were designed to evaluate the ability of
these models to approximate a given target function f(x).
After trials of different functions, basically, we found that our
KAN model cannot outperform MLP models, with training
loss ranging from 10−1 to 10−5. Moreover, for KANLayer
with keras, the model has good results (loss ≈ 10−5) in
some function, for instance, f(x) = esin(πx1)+x2

2 , but it has
some poor results for other functions (loss ≈ 10−1), such as
p =

√
1 + a2 − 2a cos(θ1 − θ2). MLP always has loss around

10−4. This shows that MLP still a better model to fit in our
opinions, and the better performance of KAN in the original
work simply results from proper dataset and shallow setting
of MLP. But for KAN model, it has its unique interpatability
and formula expression capacity, which can give us a direct

Model KAN KANLayer with Keras MLP

Loss 10−2 ∼10−4 10−2 ∼ 10−5 10−3 ∼ 10−5

TABLE VI: Loss Ranges for Different Models

insight about the dataset, and we therefore still consider KAN
as a work with potential for future research fields.

VI. FURTHER DISCUSSIONS

In our experiments, we aimed to reproduce the results
from the original paper and evaluate the KAN model under
similar conditions. While the overall trends were consistent,
we observed differences in PDE loss, convergence speed,
and symbolic recovery, which revealed both strengths and
limitations in our implementation.
For PDE loss, the original implementation achieved faster
convergence and lower final values. In contrast, our version
converged more slowly and resulted in higher residual
losses. This difference is largely due to the behavior of
the LBFGS optimizer. While both implementations used
LBFGS, TensorFlow’s static graph added overhead during
gradient calculations and line searches. On the other hand,
PyTorch’s dynamic graph handled these operations more
efficiently, which likely explains the smoother convergence in
the original results.
Another key factor was computational resources. The original
experiments utilized GPU acceleration, which provided faster
computations and better numerical stability. In comparison,
we conducted our experiments on a CPU due to resource
limitations. This significantly reduced training efficiency,
especially during grid refinement and symbolic regression,
further contributing to slower convergence and suboptimal
performance.
The grid refinement process in our implementation is
also affected by limited performance of float dtype we
adopted in the code. In some datasets , TensorFlow’s static
graph made dynamic grid updates more challenging to
implement, resulting in less precise alignment with input
data. However, we still got many good datasets on KAN
performance as we shown above in part V after tons of
experiments with KAN. Moreover, the model struggled
with symbolic recovery, particularly for functions involving
large coefficients or complex multiplicative terms. While the
original implementation recovered these structures accurately,
our version tended to focus on simpler terms, likely due
to numerical limitations and the complexity of symbolic
regression.
Despite these challenges, our experiments confirmed the
importance of model depth. Deeper KAN architectures
tends to perform better on complex tasks, as they captured
hierarchical patterns in the target functions more effectively.
But a wise rather than deep depth choice is more important
since training is not the only metric we value. A wise depth



choice based on prior knowledge of the task makes KAN
perform much better.
We state that KAN as an extraordinary work of 2024,
does have a marvellous performance on the interpretability
of deep learning, and therefore worths further study and
more experiments, to broaden the boundary of fields like
AI4Science. But it’s not as good as what the authors of the
original work said in their paper. However, we do agree with
the last parts of their paper that Choice really matters:
the readers should make wise choice on which network to
choose, like what they do with the hyperparameters of any
deep learning models they use. And we hope that more
readers find KAN useful in a recent future.

VII. CONCLUSIONS & FUTURE

In this report, we have thoroughly analyzed and
implemented Kolmogorov–Arnold Networks (KAN) based on
the Kolmogorov–Arnold Representation Theorem. The study
demonstrates the effectiveness of KAN in addressing
key challenges associated with multivariate function
approximation, including scalability and interpretability.
By designing and testing key components such as trainable
univariate splines, grid refinement, and symbolic functionality,
we verified the theoretical advantages of KAN and its
performance in complex machine learning tasks. This work
provides a comprehensive foundation for further exploration
of KAN and its applications in both theoretical and practical
domains.
Future efforts will focus on enhancing the optimization
process by improving the performance of optimizers,
particularly in high-dimensional training scenarios, to
achieve faster convergence and more efficient parameter
tuning. Addressing the issue of gradient explosion through
advanced normalization techniques and better initialization
strategies will be a priority to ensure stability during
training. Additionally, further leveraging TensorFlow’s
built-in advantages, such as distributed training, automatic
differentiation, and GPU acceleration, will help unlock KAN’s
full potential in large-scale and real-world applications. These
advancements will aim to make KAN more robust, efficient,
and widely applicable across diverse domains.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to
all those who contributed to the successful completion of this
work. To finish this work, knowledge from course ECBM
4040 by Prof.Zoran Kostic from Columbia University helped
a lot, so do the TAs of this course and all members that had
great discussions over this topic with the authors.

REFERENCES

[1] Rosenblatt, Frank. ”The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review 65.6 (1958):
386.

[2] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[3] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314, 1989.

[4] Altman, Naomi, and Martin Krzywinski. ”The curse (s) of dimensional-
ity.” Nat Methods 15.6 (2018): 399-400.

[5] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and
Lee Sharkey. Sparse autoencoders find highly interpretable features in
language models. arXiv preprint arXiv:2309.08600, 2023.

[6] Ribeiro, Antônio H., et al. ”Beyond exploding and vanishing gradients:
analysing RNN training using attractors and smoothness.” International
conference on artificial intelligence and statistics. PMLR, 2020.

[7] Lan, Xinjie, and Kenneth E. Barner. ”A Probabilistic Representation of
Deep Learning for Improving The Information Theoretic Interpretability.”
arXiv preprint arXiv:2010.14054 (2020).

[8] Dong, Hangcheng, et al. ”How to Explain Neural Networks: an Approx-
imation Perspective.” arXiv preprint arXiv:2105.07831 (2021).

[9] Lin, Ruiyuan, et al. ”From two-class linear discriminant analysis to inter-
pretable multilayer perceptron design.” arXiv preprint arXiv:2009.04442
(2020).

[10] A.N. Kolmogorov. On the representation of continuous functions of
several variables as superpositions of continuous functions of a smaller
number of variables. Dokl. Akad. Nauk, 108(2), 1956.

[11] Andrei Nikolaevich Kolmogorov. On the representation of continuous
functions of many variables by superposition of continuous functions of
one variable and addition. In Doklady Akademii Nauk, volume 114, pages
953–956. Russian Academy of Sciences, 1957.

[12] Jürgen Braun and Michael Griebel. On a constructive proof
of kolmogorov’s superposition theorem. Constructive approximation,
30:653–675, 2009.

[13] David A Sprecher and Sorin Draghici. Space-filling curves and
kolmogorov superposition based neural networks. Neural Networks,
15(1):57–67, 2002.

[14] Mario Köppen. On the training of a kolmogorov network. In Artificial
Neural Net works—ICANN 2002: International Conference Madrid,
Spain, August 28–30, 2002 Pro ceedings 12, pages 474–479. Springer,
2002.

[15] Ji-Nan Lin and Rolf Unbehauen. On the realization of a kolmogorov
network. Neural Com putation, 5(1):18–20, 1993.

[16] Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition the-
orem can break the curse of dimensionality when approximating high
dimensional functions. arXiv preprint arXiv:2112.09963, 2021.

[17] Leni, Yohan D Fougerolle, and Frédéric Truchetet. The kolmogorov
spline network for image processing. In Image Processing: Concepts,
Methodologies, Tools, and Applications, pages 54–78. IGI Global, 2013.

[18] Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet:
An interpretable and expressive spline-based neural network. Neural
Networks, 152:332–346, 2022.

[19] Hadrien Montanelli and Haizhao Yang. Error bounds for deep relu
networks using the kolmogorov–arnold superposition theorem. Neural
Networks, 129:1–6, 2020.

[20] Juncai He. On the optimal expressive power of relu dnns and its
application in approximation with kolmogorov superposition theorem.
arXiv preprint arXiv:2308.05509, 2023.

[21] Liu, Ziming, et al. ”Kan: Kolmogorov-arnold networks.” arXiv preprint
arXiv:2404.19756 (2024).

[22] Liu, Ziming, et al. ”Kan 2.0: Kolmogorov-arnold networks meet sci-
ence.” arXiv preprint arXiv:2408.10205 (2024).

[23] https://www.theinformation.com/articles/openai-shifts-strategy-as-rate-
of-gpt-ai-improvements-slows?ref=platformer.news..

[24] Link to this work: https://github.com/ecbme4040/e4040-2024Fall-
Project-KANY-hd2573-jx2598-yk3108.git



TABLE VII: Individual Student Contributions in Fractions

UNI † hd2573 † jx2598 † yk3108

Last Name Dong Xiang Ke

Fraction of
(useful) total
contribution

1/3 1/3 1/3

What I did 1 Background
Review

Results
Review

Methods Re-
view

What I did 2 Coding
including
Pipeline &
Multkan

Coding
including
Multkan &
LBFGS

Coding
including
Multkan,
KanLayer,
and Keras
Kan

What I did 3 Experiments
of V.1-V.4

Experiments
of V.5-V.6

Experiments
of V.7-V.10

What I did 4 Report Writ-
ing of Part
I,III,IV,V,VII

Report Writ-
ing of Part
II,III,V,VI

Report Writ-
ing of Part
II,V,VI

† All authors contributed equally.


