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Abstract 
This study explores the integration of two-dimensional Rotary Positional Embeddings (2D 

RoPE) into Vision Transformers (ViTs) and Performers to enhance image recognition 

performance on the CIFAR-100 dataset. While Absolute Positional Embeddings (APE) 

achieve superior accuracy and convergence for low-resolution images, RoPE-based methods 

show potential advantages for higher-resolution tasks. Performers demonstrate greater 

computational efficiency with larger token dimensions compared to ViTs. These findings 

highlight the importance of dataset characteristics and model architecture in selecting 

positional embedding strategies. Future research will focus on adaptive mechanisms to 

optimize performance, efficiency, and scalability in transformer-based models. 
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1 Introduction 

The self-attention mechanism has become the cornerstone of state-of-the-art performance in 

large-scale deep learning tasks over recent years. It serves as a foundational element for 

numerous high-performance models, most notably the Transformer architecture[1]. 

Transformers have revolutionized fields such as natural language processing (NLP) and 

computer vision[2], consistently setting new benchmarks. One key innovation contributing to 

the Transformer's success, alongside self-attention, is positional embedding. Positional 

embeddings enable the model to capture spatial or sequential relationships among tokens, 

which is critical for tasks that depend on context, such as understanding "the cat is on the chair" 

versus "the chair is on the cat." 

Positional embeddings, however, operate independently of the self-attention mechanism itself. 

Selecting an appropriate positional embedding method is essential for enhancing the 

performance of the attention mechanism. The original Transformer paper introduced absolute 

positional embeddings (APE), which encode positional relationships explicitly as fixed 

embeddings added to token embeddings. While APE allows the model to learn positional 

information, its effectiveness is limited, especially for more complex relationships in larger 

datasets. 

To address these limitations, subsequent research has introduced relative positional 

embeddings (RPE). RPEs encode relative distances between tokens rather than their absolute 

positions, making them more adaptable to tasks requiring relational understanding[3]. Recent 

advancements, such as Rotary positional Embeddings (RoPE)[6], have further refined this 

approach by encoding relative positional relationships through rotational transformations[4] in 

the embedding space. RoPE has shown exceptional performance in NLP tasks, particularly for 

one-dimensional datasets, where it effectively preserves positional information. However, 

extending RoPE to two-dimensional tasks, such as image data in vision transformers (ViTs), 

remains challenging due to its original design constraints. 

The original paper we aim to reproduce introduces a two-dimensional extension of RoPE (2D 

RoPE) for vision transformers. This adaptation modifies the query (Q) and key (K) 

representations in the self-attention mechanism to encode 2D positional relationships 

effectively. Their experiments demonstrated two significant findings: 

1. The 2D RoPE mechanism improves performance on specific vision tasks compared to 

classical positional embeddings. 
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2. Combining 2D RoPE with traditional positional embedding methods yields further 

performance gains for ViT models. 

In our work, we aim to reproduce the findings of the original paper but under different 

conditions: using smaller-scale image datasets and incorporating the 2D RoPE mechanism into 

state-of-the-art transformer variants such as Performer. Performer[5] introduces efficient 

attention mechanisms that reduce computational complexity while maintaining robust 

performance, making it a compelling choice for smaller datasets. Through this project, we not 

only aim to validate the performance of 2D RoPE but also explore its integration into other 

transformer architectures to compare their effectiveness and gain deeper insights into attention-

based learning models. 

This paper is organized as follows: in Part 1 we have introduced the background and motivation 

of our study; Part 2 reviews the original paper’s methodology and contributions; Part 3 outlines 

our experimental setup, including architectural design and parameter settings; an 

“Implementation” section takes place in Part 4, detailing the dataset used and the Performer 

model employed; Part 5 presents an analysis of the results, comparing our findings with those 

of the original study; and finally, Part 6 concludes by summarizing key insights, discussing 

limitations, and suggesting avenues for future research. 
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2 Review on original paper 

This part will review the original work. We will illustrate the idea of RoPE for ViT and analyze 

its contributions. 

2.1 Methodology of the Original Paper 

It is proposed in the original paper that Rotary positional Embedding (RoPE) is a mechanism 

to encode relative positional information in self-attention layers efficiently. While RoPE was 

initially designed for 1D sequence data (e.g., natural language), the paper extends its 

applicability to 2D vision tasks such as classification, detection, and segmentation. This work 

addresses challenges related to extrapolation and positional encoding in Vision Transformers 

(ViTs). 

RoPE uses a mathematically elegant method that replaces additive positional embeddings. This 

approach embeds relative positional differences into attention computations with Euler’s 

formula. This mechanism inherently supports extrapolation across sequence lengths without 

additional bias terms.  

For 2D vision tasks, the paper provides two methods. Axial frequencies apply independent 

rotations along the x and y axis, effectively encoding axis-aligned positional relationships. 

However, this method struggles with mixed dependencies. Mixed learnable frequencies 

overcome this by combining rotations of both axes with learnable parameters, allowing flexible 

encoding of diagonal and complex spatial relationships.  

RoPE is integrated into Vision Transformers (ViTs) in two ways. In standard ViT architectures, 

RoPE is applied globally to the sequence of patches, treating each patch as a token. In 

hierarchical models like Swin Transformers, RoPE is applied locally within attention windows. 

Across both architectures, RoPE enhances attention by embedding relative positional 

information without requiring additional computational overhead. The paper evaluates RoPE 

on multiple tasks, including multi-resolution classification on ImageNet-1k, object detection 

on MS-COCO, and semantic segmentation on ADE20k, focusing on its ability to handle 

extrapolation scenarios effectively. 

 

2.2 Key Results of the Original Paper 

The original paper shows that 2D RoPE significantly enhances performance across a range of 

vision tasks, including image classification, object detection, and semantic segmentation. One 
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of its standout features is its ability to handle input resolutions that exceed those seen during 

training. 

For multi-resolution classification on ImageNet-1k, RoPE excels in handling extrapolated 

resolutions, such as those beyond the training size of 224×224. Both RoPE-Axial and RoPE-

Mixed outperform traditional methods like APE and RPB. Among these, RoPE-Mixed 

performs best, thanks to its ability to capture complex 2D positional relationships through 

learnable mixed frequencies. While combining RoPE with APE slightly improves interpolation 

accuracy, it compromises RoPE’s extrapolation capabilities, makingFor object detection on 

MS-COCO, RoPE improves Average Precision (AP) scores when used with ViT and Swin 

Transformer backbones. For example, pairing RoPE-Mixed with DINO-trained ViT-B and 

ViT-L achieves up to +1.8 AP gains over APE. Similarly, Swin Transformers with RoPE 

outperform those using RPB, demonstrating RoPE’s effectiveness in hierarchical architectures. 

RoPE’s ability to improve global attention plays a critical role in its strong performance on 

tasks involving objects of varying sizes and scales. 

In semantic segmentation on ADE20k, RoPE delivers significant improvements in mean 

Intersection-over-Union (mIoU). ViT models with RoPE-Mixed achieve up to +2.5 mIoU 

increases compared to APE in multi-scale evaluations. Swin Transformers with RoPE-Mixed 

also outperform those with RPB, confirming its strength in dense prediction tasks. Notably, the 

best segmentation results are achieved by combining RoPE-Mixed with APE, showcasing its 

flexibility for both interpolation and extrapolation scenarios. 

Additionally, the paper highlights how RoPE enhances attention dynamics, enabling models to 

attend to more diverse and longer-range token interactions. This is particularly beneficial for 

handling high-resolution inputs. Remarkably, these benefits come with minimal computational 

overhead, as RoPE introduces only a slight increase in FLOPs for ViT-B. All methods 

presented in the essay show that RoPE proves to be a robust and efficient positional embedding 

method that consistently outperforms traditional approaches like APE and RPB. 
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3 Methodology 

3.1 Basic setting 

 
Platform AutoDL 

CPU 14 vCPU Intel Xeon Gold 6348 @ 2.60GHz 
GPU NVIDIA A800 Tensor Core GPU 80GB 

Python Version 3.10 
Pytorch Version 2.1.2 

CUDA 11.8 

Table 1. Experimental environment configuration 
 
This experiment aims to compare the accuracy and efficiency of both Transformer and 

Performer with and without the introduction of RoPE (Rotary Positional Embedding). The 

experimental environment is based on the AutoDL cloud computing platform, configured with 

an A800 80GB GPU, 14 vCPU Intel Xeon Gold 6348 @ 2.60GHz, using Python 3.10 (Ubuntu 

22.04), PyTorch 2.1.2 and CUDA 11.8. 

The experiment will train 20 models: Transformer with APE (Absolute positional Encoding), 

Transformer with axial RoPE, Transformer with mixed RoPE, Tranformer with APE and axial 

RoPE, Transformer with APE and mixed RoPE, Performer with APE, Performer with axial 

RoPE, Performer with mixed RoPE, Performer with APE and axial RoPE, Performer with APE 

and mixed RoPE, and each of these models have small and base version, which differ on the 

number of attention head. In addition, the experiment runs them under the same training 

configuration and compare their training time and accuracy.  

3.2 Performer Introduction 

The Performer, introduced by Choromanski et al. (2021), is an efficient alternative to 

traditional Transformer, specifically designed to handle the challenges of long sequences. By 

rethinking how self-attention is computed, the Performer reduces the quadratic complexity of 

standard Transformers to linear, making it faster and more scalable for tasks like natural 

language processing, computer vision, and even biological sequence modeling [5]. 

At the heart of the Performer is the FAVOR+ (Fast Attention Via Orthogonal Random features) 

mechanism. Instead of directly computing the attention weights with softmax, FAVOR+ uses 

kernel-based random feature maps to approximate these calculations. In standard Transformers, 
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the self-attention mechanism computes interactions between every pair of tokens, leading to a 

computational complexity of , where N is the sequence length. This quadratic growth 

becomes a bottleneck for long sequences, especially in resource-constrained environments [5]. 

Performers resolve this by reformulating the self-attention mechanism as: 

 𝑨𝒕𝒕⟷#(𝑸,𝑲, 𝑽) = 𝑫,"𝟏(𝑸$((𝑲$)𝑻𝑽)) (1) 

where , , and represent the query, key, and value matrices, respectively. In the 

Performer, this is reformulated using kernel-based random feature maps as: 

 (𝑸$, 𝑲$) = (𝚽(𝐐),𝚽(𝐊)) (2) 

where  is a feature transformation that allows the attention computation to scale linearly 

with the input size [5]. This approximation allows the Performer to reduce the computational 

complexity of attention from  to . With the help of this innovation, the Performer 

is able to process much longer sequences efficiently, without significantly sacrificing accuracy 

or model expressiveness. 

Performers have been shown to perform well across a variety of applications, including text 

classification, language modeling, and protein sequence modeling. They inherit the strengths 

of Transformers [1] while addressing their computational and memory limitations. Moreover, 

Performers are particularly suited for real-world scenarios that require processing long-range 

dependencies efficiently, making them a practical and impactful advancement in deep learning 

[1]. 
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4 Implementation 

4.1 Dataset 

The CIFAR-100 dataset is an image classification dataset released by Alex Krizhevsky and 

Geoffrey Hinton in 2009 and is widely used in the fields of computer vision and deep learning. 

The dataset contains 60,000 32x32 pixel RGB color images, of which 50,000 are used for 

training and 10,000 for testing. Compared to the CIFAR-10 dataset, CIFAR-100 has richer 

categories, containing 100 classes, each with 600 images, which are grouped into 20 

superclasses [7]. 

Each image contains 3 color channels (red, green, and blue) with a resolution of 32x32 pixels 

and is stored as a 3072-dimensional vector (32×32×3). The dataset files are stored in Python 

pickle format and mainly consist of train (training set), test (test set), and meta (calss name and 

superclass name) files. The number of images under each category is roughly balanced, which 

facilitates the training and evaluation of the model on fine-grained classification tasks. 

The 100 classes of CIFAR-100 cover a wide range of realistic scenarios such as fish (e.g., 

dolphins, whales, seals), flowers (e.g., lilies, dandelions, sunflowers), reptiles (e.g., lizards, 

snakes, turtles), etc., which are categorized into 20 larger superclasses [7]. 

Since the dataset size of CIFAR-100 is only about 161 MB, the image size is small, which is 

easy to load and process quickly, and is very suitable for experiments in resource-constrained 

environments, we choose this dataset in this experiment. 

4.2 Hyperparameter setting 

Since most of the hyperparameters in the source code have default values and obtained results 

good enough, we didn't change them too much. Below we list some of the hyperparameters we 

changed for our exvironmental setting: 

Hyperparameter Value 
--batch-size 512 

--epochs 400 
--input-size 32 

--lr 1e-4 
--unscale-lr True 

--repeated-aug True 

Table 2. Hyperparameters setting 
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Due to the fact that the GPU used is A800 with 80G memory, the batch size is set to 512 in 

order to save the training time. epochs are 300 rounds by default, but after experiments, 300 

rounds did not converge very obviously, so it is increased to 400 rounds. Since the image size 

of CIFAR-100 is 32×32, we set the input size to 32. the default size of learning rate is 5e-4, but 

in the actual training process there will be a gradient explosion, so we choose to shrink to 1e-4 

to ensure the accuracy of the realized data. When unscale-lr is True, Linear Learning Rate 

Scaling is not performed because linear learning rate scaling will significantly increase the 

learning rate during high-volume training, which may lead to excessive gradient updates, 

triggering unstable training or even gradient explosion. Keeping the learning rate fixed helps 

the training process be smoother and avoids drastic fluctuations. repeated-aug allows each 

sample to be repeatedly sampled for multiple times in each epoch and different data 

enhancement operations (e.g., random cropping, rotation, flipping, etc.) are applied to each 

sample. This approach can effectively increase the diversity of samples seen by the model, 

which helps to improve the generalization ability. 
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5 Result 

5.1 DeiT result 

In our experiments with DeiT architecture, we evaluated multiple positional embedding 

configurations, including Absolute positional Embedding (APE), RoPE-Axial, RoPE-Mixed, 

and their combined variants. Validation accuracy and loss trends shown below provide key 

insights: 

 
Figure 1. The Top-1 Accuracy of DeiT with different positional embedding methods 

 

 
Figure 2. The Top-5 Accuracy of DeiT with different positional embedding methods 

 

 



– 11 – 

 
Figure 3. The loss of DeiT with different positional embedding methods 

The APE-based model consistently outperforms RoPE-based configurations across all epochs, 

achieving higher validation accuracy at both top 1 and top 5 thresholds. RoPE-Mixed and 

RoPE-Axial embeddings, while competitive, showed slightly lower final accuracy, which is in 

contrast to the findings of the original essay. 

Models using APE demonstrated a faster reduction in validation loss, converging earlier and 

stabilizing at a lower loss compared to RoPE variants. The RoPE-Mixed and RoPE-Axial 

configurations showed slower convergence, which could be attributed to the smaller input 

resolution (32×32 for CIFAR-100) and the inherent challenges in encoding positional 

information in such datasets. 

One critical factor contributing to these observations is the use of CIFAR-100, a dataset with 

smaller image resolutions (32×32) compared to those used in the original study (e.g., 

ImageNet). We assume that the reduced spatial information in CIFAR-100 limits the 

advantages offered by RoPE, which thrives on extrapolating and scaling to larger resolutions. 

This difference in dataset characteristics may explain why APE outperformed other 

embeddings, contrary to the original findings where RoPE showed superior results, and this 

property of the RoPE is also illustrated in the original study. 
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5.2 Performer results 

5.2.1 positional embedding comparison 

We implement the Performer based on the framework in GitHub[1]. In the context of Performer 

architecture, we evaluated its performance using a range of positional embeddings used in 

RoPE above: Absolute positional Embedding (APE), RoPE-Axial, RoPE-Mixed, and their 

combined variants. The results are as follows: 

 
Figure 4. The Top-1 Accuracy of Performer with different positional embedding methods 

 
Figure 5. The Top-5 Accuracy of Performer with different positional embedding methods 
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Figure 6. The loss of Performer with different positional embedding methods 

Performer models with APE demonstrated faster convergence in validation loss and reached 

significantly lower final values compared to configurations using only RoPE-based 

embeddings. This performance difference stems from the fundamental differences in how 

positional information is encoded. APE directly encodes absolute positional relationships, 

which are straightforward and effective for the limited spatial resolution (32×32) of CIFAR-

100 images. In contrast, RoPE relies on relative positional encoding, which is designed for 

capturing complex spatial relationships in high-resolution data but struggles to fully utilize the 

simpler positional information present in low-resolution datasets like CIFAR-100. 

The Performer architecture combined with APE consistently achieved the highest validation 

accuracy across all epochs in both top-1 and top-5 metrics. This highlights that APE aligns well 

with Performer’s efficient attention mechanism by facilitating effective integration of absolute 

positional information into attention computation. Combined embeddings, such as RoPE-

Mixed-APE and RoPE-Axial-APE, offered moderate improvements over RoPE-only 

configurations but still lagged behind APE-only setups. This suggests that the simplicity and 

directness of APE encoding make it better suited for low-resolution datasets. 

RoPE-Axial and RoPE-Mixed configurations, while slightly less effective than APE, showed 

steady improvements during training. However, their reliance on relative positional encoding 

reduces their utility in CIFAR-100, where the smaller resolution limits the complexity of 

positional relationships that can be captured. This limitation reinforces findings from DeiT 

experiments, where RoPE’s benefits were more pronounced in high-resolution tasks. Together, 

these results underscore how dataset characteristics—such as resolution—and embedding 
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design principles shape performance, particularly in architectures like Performer that rely on 

efficient attention mechanisms. 

5.2.2 Number of Attention Head comparison 

To better understand the relationship between model size and the performance of Performer, 

we conducted experiments with two variants of Performer architecture across different 

positional embeddings setups: base (12 attention heads) and small (6 attention heads). Both 

models have the same embedding dimensions. The validation accuracy and loss trends provide 

critical insights into how model size affects the Performer. 

 
Figure 7. The Top-1 accuracy of Performer with different positional embedding methods and model 

sizes 

 
Figure 8. The Top-5 accuracy of Performer with different positional embedding methods and model 

sizes 
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Figure 9. The loss of Performer with different positional embedding methods and model sizes 

Base models consistently exhibited faster convergence and lower validation loss compared to 

small models, demonstrating the significant advantage provided by having more attention 

heads.  The superior performance of base models compared to small models is directly linked 

to their increased number of attention heads. More attention heads enable richer feature 

representation by allowing the model to process diverse patterns simultaneously, while also 

improving attention precision by dividing the embedding dimension into finer subspaces. This 

precision helps disentangle complex positional relationships, particularly for embeddings like 

RoPE, which rely on relative positional encoding. 

Additionally, the increased capacity of base models stabilizes training by balancing the learning 

load across heads, resulting in smoother gradient flows and faster convergence. In contrast, 

small models, with fewer heads, lack the capacity to fully leverage positional information, 

particularly for complex embeddings, leading to consistently poorer performance. 

5.3  Discussion 

5.3.1 Accuracy comparison 

This section provides an in-depth analysis of the performance differences between DeiT and 

Performer architectures with various positional embeddings, highlighting how their structural 

characteristics and attention mechanisms interact with embedding types in the context of the 

low-resolution CIFAR-100 dataset. 
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Figure 10. The Top-1 comparison between Deit and Performer with different positional embedding 

 
Figure 11. The Top-5 comparison between Deit and Performer with different positional embedding 

 
Figure 12. The loss comparison between Deit and Performer with different positional embedding 
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DeiT with Absolute positional Embedding (APE) consistently outperformed all other 

configurations in both accuracy and loss metrics. Performer with APE followed closely, 

achieving comparable but slightly lower results. Performer’s approximate attention mechanism, 

which is linear in time and memory, inherently introduces minor precision errors when 

compared to DeiT’s quadratic exact attention. This fundamental difference directly contributes 

to the performance gap between the two architectures. However, the minimal gap between 

DeiT and Performer with APE suggests that in low-resolution datasets like CIFAR-100, the 

internal feature structures of images are relatively simple, and attention computation precision 

is not critically impactful for achieving high performance. 

Among models utilizing RoPE-Mixed and RoPE-Axial embeddings, Performer outperformed 

DeiT in both cases, though the difference was marginal. Performers with RoPE-Mixed and 

RoPE-Axial showed nearly identical results in accuracy and loss. DeiT with RoPE-Axial 

consistently ranked last in both accuracy and loss, highlighting its limitations in this context. 

RoPE-Axial and RoPE-Mixed excel in high-resolution scenarios by leveraging their ability to 

capture complex relative positional relationships. However, these capabilities are not fully 

utilized in the low-resolution CIFAR-100 dataset, where such relationships are less significant. 

The consistently poor performance of DeiT with RoPE-Axial suggests that its strong 

exploratory capabilities in high-resolution datasets are poorly suited to low-resolution tasks. 

Performer, by contrast, benefits from its efficient attention mechanism, which balances 

computational demands with sufficient precision for lower-resolution data. 

DeiT with RoPE-Mixed and RoPE-Axial embeddings showed the fastest initial improvements 

in both loss and accuracy, outperforming other configurations during the early training stages. 

However, these gains quickly plateaued, with both models converging to suboptimal final 

results. RoPE embeddings rely on precise relative positional relationships to achieve their 

extrapolation capabilities. In the early stages of training, these relationships allow the model to 

efficiently capture 2D spatial dependencies, leading to rapid improvements in performance. 

However, as training progresses, the smaller resolution of CIFAR-100 limits the amount of 

positional information that can be exploited, causing the performance of these models to 

plateau prematurely. This aligns with the findings of the original paper, which noted that 

RoPE’s effectiveness is contingent on sufficient spatial complexity to leverage its full potential. 
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5.3.2 Time comparison 

Avg. Training 
Time / Epoch APE RoPE-Mixed RoPE-Axial RoPE-Mixed 

+APE 
RoPE-Mixed 

+APE 

ViT 6.17 9.651 9.195 7.497 9.318 
Performer 7.264 10.384 9.937 10.092 9.731 

Table 3. Training time comparison among all positional embedding 

 
Avg. Inference 
Time / Epoch APE RoPE-Mixed RoPE-Axial RoPE-Mixed 

+APE 
RoPE-Mixed 

+APE 
ViT 6.17 9.651 9.195 7.497 9.318 

Performer 7.264 10.384 9.937 10.092 9.731 
Table 4. The loss comparison between Deit and Performer with different positional embedding 

From the results above, we conclude that the choice of positional encoding significantly affects 

both training and inference efficiency for ViT and Performer models. APE consistently 

demonstrates the shortest training and inference times (6.17s for ViT and 7.264s for Performer), 

highlighting its computational simplicity and suitability as a baseline. However, RoPE-based 

methods, particularly RoPE-Mixed, introduce substantial overhead (e.g., 9.651s for ViT and 

10.384s for Performer), reflecting the added complexity of rotary transformations in the 

attention mechanism. RoPE-Axial, while still more computationally demanding than APE, 

achieves slightly reduced times compared to RoPE-Mixed, offering a better trade-off between 

efficiency and representational power. Interestingly, combining RoPE-Mixed with APE yields 

variable results, with training and inference times influenced by implementation specifics. This 

combination appears to offset some of the computational costs of RoPE while retaining its 

representational advantages. Notably, Performer consistently incurs higher training and 

inference times across all encoding methods compared to ViT, suggesting that Performer's 

focus on memory efficiency does not fully mitigate the computational demands of complex 

positional encodings, which we’ ll take a deep discussion in 5.3.3. Overall, while APE remains 

the most efficient, RoPE-based methods and their combinations provide valuable trade-offs 

between computational cost and representation, warranting further optimization to better align 

with efficient architectures like Performer. 

 

5.3.3 Patch size impact 

In this chapter, training and inference speeds are measured and analyzed regarding the regular 

transformer as well as the performer. Different patch sizes are configured to compare the time 
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efficiency under different token dimensions. For the CIFAR-100 dataset which possesses a 

32x32 image size, the correspondence between patch size and number of tokens after the patch 

embedding is listed below in Table 5: 

 

Patch Size 8×8	 4×4	 2×2	 1×1	

Token 16 64 256 1024 

 
Table 5. Patch-Token Correspondence for CIFAR-100 Dataset 

In theory, the attention mechanism costs O(L&d) timewise for the regular transformer, where L 

is the number of tokens and d stands for hidden dimension. For the performer, calculating the 

attention costs O(Lrd) , where r  indicates the kernel dimension. Since the ReLU kernel 

transformation without the projection matrix does not change the dimension size, the time 

complexity of calculating attention with the performer is O(Ld&) where d = 64 in our case. 

Therefore, the regular transformer theoretically has better time efficiency than the performer 

when the token dimension L < 64, while the performer is more advantageous when L > 64. 

In our experiments, the regular transformer and performer are both “small” sized and equipped 

with mixed-type rotary positional embeddings. Due to graphic memory limitations, batch sizes 

for both models are set to 64 at 1×1 patch configuration and set to 512 for other configurations 

in order to reduce overall training time. The average training and inference time costs for each 

epoch are illustrated in Figure 13 and Figure 14. Results indicate that the regular transformer 

is slightly faster than the performer at 8×8 patch size, while the performer enjoys significantly 

less training and inference time when the patch configuration is 2×2 and 1×1, which 

corresponds to large token dimensions (256 and 1024). The test results are highly consistent 

with our theoretical analysis. 
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Figure 13. Epoch Training Time for Regular Transformer and Performer 

 

 
Figure 14.  Epoch Inference Time for Regular Transformer and Performer 
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6 Conclusion and future work 

6.1  Discussion 

We provides a detailed evaluation of the DeiT and Performer architectures, focusing on the 

impact of different positional embedding strategies and time efficiency across varying token 

configurations. The findings demonstrate that Absolute Positional Embedding (APE) is highly 

effective in capturing positional relationships within low-resolution datasets such as CIFAR-

100. Models utilizing APE consistently outperformed others, achieving a test accuracy of 60.42% 

in DeiT and 59.63% in Performer. Among all RoPE variants in our experiments, it is shown 

that Performer with RoPE-Axial and APE reaches the best accuracy, which is 59.30%.  

The analysis of training and inference efficiency highlighted a nuanced performance difference 

between the two architectures. While the regular transformer exhibited marginally better 

efficiency at smaller token dimensions (e.g., 8×8 patch sizes), the Performer displayed 

significant advantages as the token dimensions increased (e.g., 1×1 patch sizes). This trend 

aligns closely with theoretical predictions, confirming the Performer’s scalability and 

efficiency when handling high-token configurations. 

The consistency between the theoretical and experimental results strengthens the validity of 

the findings presented in this report. However, certain trade-offs in embedding performance, 

particularly for hybrid approaches like RoPE Axial - APE, merit further investigation to 

optimize their application. These insights could provide a robust foundation for advancing the 

understanding of positional embedding strategies in transformer architectures and their 

adaptability to datasets with varying resolutions. 

Models Accuracy Models Accuracy 

Deit_ape_base 60.42% Performer_ape_base 59.63% 
Deit_ape_small 48.11% Performer_ape_small 50.87% 

Deit_rope_mixed_base 57.55% Performer_rope_mixed_base 57.75% 
Deit_rope_mixed_small 46.71% Performer_rope_mixed_small 47.50% 
Deit_rope_axial_base 58.09% Performer_rope_axial_base 58.03% 
Deit_rope_axial_small 47.18% Performer_rope_axial_small 47.53% 

Deit_rope_mixed_ape_base 58.49% Performer_rope_mixed_ape_base 50.97% 
Deit_rope_mixed_ape_small 47.41% Performer_rope_mixed_ape_small 49.53% 
Deit_rope_axial_ape_base 58.54% Performer_rope_axial_ape_base 59.30% 
Deit_rope_axial_ape_small 47.80% Performer_rope_axial_ape_small 49.67% 

Table 6. The accuracy of all models 
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6.2 Future work 

In our experiments, we reproduced the method described in the original paper and verified its 

feasibility. Moreover, some of our experimental results contradicted those reported in the 

original paper, and we have analyzed several potential reasons for these discrepancies in the 

report. The findings of this study open several avenues for future research that can further 

enhance the understanding and application of transformer architectures and positional 

embedding strategies. 

Hybrid approaches, such as RoPE Axial APE, demonstrated promising results but still 

underperformed compared to standalone APE. Future studies could focus on systematically 

quantifying the trade-offs between accuracy and computational cost for these hybrid 

embeddings. Such an analysis could lead to improvements in their design, ensuring they 

effectively combine the strengths of absolute and relative positional encoding. 

Performer’s efficient attention mechanism showed significant advantages at larger token 

dimensions but faced limitations at smaller ones. Future research could focus on introducing 

adaptive mechanisms within the Performer framework, allowing it to dynamically adjust based 

on token configurations or dataset characteristics. Such adaptability could improve its 

performance across a wider range of applications. 

Achieving an optimal balance between accuracy, efficiency, and scalability remains a key 

challenge in transformer-based architectures. Future research could investigate multi-objective 

optimization strategies that consider these factors holistically, providing models that are not 

only high-performing but also cost-effective and scalable across different environments. 

By pursuing these directions, future work can build on the results of this study to refine 

transformer architectures and positional embedding strategies. These advancements would 

support their broader adoption in applications requiring diverse datasets and computational 

constraints, ultimately contributing to the development of more efficient and versatile deep 

learning models. 

 
 

 

 
 
 



– 23 – 

References 

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, 

Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural 

Information Processing Systems 30 (pp. 5998-6008). 

2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, 

T., ... & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image 

recognition at scale. In International Conference on Learning Representations. 

3. Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with relative position 

representations. In Proceedings of the 56th Annual Meeting of the Association for 

Computational Linguistics (pp. 464-468). 

4. Su, J., Lu, Y., Pan, S., Guo, Z., Cao, Y., & Xiong, D. (2021). RoFormer: Enhanced 

transformer with rotary position embedding. arXiv preprint arXiv:2104.09864. 

5. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlós, T., ... & 

Chatterjee, A. (2021). Rethinking attention with performers. In International 

Conference on Learning Representations. 

6. Heo, B., Park, S., Han, D., & Yun, S. (2024). Rotary position embedding for vision 

transformer. CoRR, abs/2403.13298. 

7. Krizhevsky, A. (2009). Learning multiple layers of features from tiny images (Tech. 

Rep.). University of Toronto. 

 

 

 

 

 

 

 

 

 

 

 



– 24 – 

Contribution Form 

 hd2573 jx2598 wz2708 xc2763 zw3057 

Topic 

Review 
√  √ √  

Project 

Design 
√ √  √ √ 

Coding √ √ √ √ √ 

Training & 

Evaluation 
 √ √ √ √ 

Report 

Writing 
√ √ √ √ √ 

 

* All members contribute almost equally. 



– 25 – 

Appendix 

 

 


